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Abstract. Let 1W, g) be a spin manifold of dimensionn. In terms of the Dirac
operatorP of (W, g), we introduceon the spinor fields a conformallycovariant
first-order operatorD that is strictly connectedwith the twisror-spinors.Weshow
that the operator (L~— p) (p (n/4(n .— 1))R) is positive. For a compactspin
manifold of dimensionn ~ 3, the existencesof harmonicspinorsand iwistor-
spinors~ 0 are mutually exclusive,exceptfor the parallel spinors.By meansof
a universalformula, weshowthat the Hijazi inequality [8] holds for everyspinor
field suchthat (Pi,I’, P~li)= X

2(~,1i,~i) (X = const). In the limiting case,themani-
fold admitsa Killing spinor wich canbeevaluatedin termsof ~ti. Usingthe Yamabe-
Schoentheorem [15], we prove that, if the space r of the twistor-spinorsof
(W, g) is not reducedto zero, thereis a conformalchangeof the metricggiving
a manifold with Killing spinors* 0. Interpretation of dim ii’ in termsof these
spacesof Killing spinors. If the compactspin manifold(W,g) of dimensionn ~ 3
is not conformally isometric with the sphere, every twistor-spinor is without
zeroon W.

INTRODUCTION

Killing spinors were first introducedin MathematicalPhysics:general relati-

vity, 11-dimensional(resp.10-dimensional)supergravitytheory,supersymmetry,
matter fields (see, for example[1] to [5]). The context is often the following:
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the main spaceis a fiber bundle on a space-time;the fibers are properlyRieman-
man manifolds (for examplespheresor homogeneousspaces)admittinga spinor

structure.In many cases,Killing spinors appearon thesemanifolds.
The notion also appearsin a purely geometricalway in direct relation with

the Dirac operatorP of a spin manifold. A Killing spinor is automaticallyaneigen-
spinor of P and is a generalizationof the notion of parallel spinor. Many years
ago, I studiedpropertiesof parallel spinorsin the contextof the harmonicspinors

[6]. Someinterestingstepsin this direction has beenrecentlytakenby Friedrich

[71and Hijazi [8].
The notion of Killing spinor is a particularcaseof the notionof twistor-spinor

which has beenintroducedby Penrose[10]. I havedefinedrecently [121 a con-

formally covariant first-order operatorD on the spinorssuch that the twistor-

spinors are the zeros of D. This operatorappearsin an universal formula that is

the main tool of this paper(formula(2-5)).
For a compactspin manifold, Hijazi has given a lower bound for the square

of the eigenvaluesof P in terms of conformal geometry.The limiting case is

precisely the case when the manifold admitsKilling spinors. I shall place here
the Hijazi inequality in its true context,showingthat, in a suitable sense,this

inequality is universal. My approachdiffers from that a Hijazi (see Theorem4

andTheorem5). I will show that,roughly speaking,harmonicspinorsand twistor-
spinorshavea charactermutuallyexclusive.

It is possibleto interpret the dimension of the spaceof the twistor-spinors

in terms of the dimensionsof the spacesof Killing spinorscorrespondingto a
suitable conformal metric given by the Yamabe-Schoentheorem[15]. We prove
with the same tool that if a manifold is not conformally isometric with the

sphere,every twistor-spinoris without zero.
According to the Flijazi inequality, the physical philosophy which appears

can be given in the following way; considera compactspin manifold as a basis
for a Euclideanmodel for fermionic field ,Ii. If the manifold admits Killing
spinors,we can considerthe correspondingeigenvalue~ of the Dirac operator

P as associatewith a ground state:if i,li satisfies (P~1’P~1i)= X
2(çli ji), we have

>

1. DEFINITIONS AND GENERAL FORMULAS

1. Spin manifolds and correspondingconnections

a) Let (W, g) be an orientedRiemannianmanifold of dimensionn ~ 2 (with,
n = 2v or n = 2v + 1) endowedwith a positive definite metric g. If (W, g) has

a spin structure with fundamentalvector-spinor ‘y, thereis a principal Spin(n)-
bundle~ on W which is a two-fold coveringp : ~-~E of the orthonormaloriented



KILLING SPINORS,TwISTOR-SPINORS AND HIJAZI INEQUALITY 3

frames bundle of (W, g) of structuralgroup SO(n); a point z is called a spin
frame.The manifold (W, g) beingreferredto the orthonormalframes,introduce

the 2v x 2u Dirac matricessatisfying:

(1.1) ‘y-y13 +7~y =—2g~e (a,j3= 1,... ,n).

Thesematrices give the componentsof ‘y with respect to the spin frames.
It is well known that the matrices‘y~can be chosenantihermitian (~= —

where denotesthe adjunction).The group Spin(n) canbe consideredas agroup
of 2~x 2v unitary matricesA (with A = A—’) satisfying:

(1.2) A1A’ =A~7~

whereA = (A ~) is theprojection of A on SO(n).

If t,D is a contravariant1-spinor (iji(z Ic’) = A ~4’(z),wherez is a spinor frame),
~ji is a covariant1-spinor (IjI(z A) = ~ji(z)A) and the space~ (x E W) of thecon-

travariant 1-spinorsat x admitsa canonicalstructureof Hermitian vectorspace
given by the scalarproduct (~p(l), iji~

2~)= ~(2) çLi~’~.We denoteby ~ the vector

bundleof the contravariant1-spinorsof (W, g).

b) The Riemanmanconnectionof (W,g) inducesa connectionon the principal
bundle~ by the isomorphismbetweenthe Lie algebrasof Spin(n) andSO(n).

Now introducelocal sectionof the orthonormalframesbundle. If = (w~)

(with ~ + = 0) is, for a domain U of W, the I-form definingthe Rieman-
nian connection,the correspondingspinor connectionis given by the 1-form

(1.3) a~=—(1/4)w
137~713

We denoteby V the correspondingcovariantdifferentiation. Wehave V ~ = 0
and the adjunction commuteswith V. Let RC = (R013 ~) be the Riemannian
curvaturetensorof (W, g), Ri = (R13) its Ricci tensorandR its scalarcurvature.
We haveon U the classicalformulas:

R013 AM 7137X7M = 2R0137
13 R

0137°’7
13=—R.

For a spinor field Iji, we have the Ricci identity:

(V
0 V13 — V13V0 i,ii = — (1/4) R~~0137~7~~i

It follows that:

(1.4) ‘1
13(V

0V13 —V13V) iji =— (1/2) R013 713 Iji

c) Let P be the Dirac operator on (W,g), Pits adjoint. Wehave

(1.5) P~j=y°V~ Pi=—V~j/7°.
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We set /4i = P
2 ~ti (Laplacian of spinor). An elementary calculus gives [I]

(1.6) /4i =—V°V ~i + (R/4) ~ji.

If W is compact, introduce the giobal scalar product (~1), ~2)> = f~(~(1)
17 where 77 is the Riemannian volume element. Wehave similar scalar pro-

ducts on the tensor-spinors;P is formally selfadjointwith respectto this scalar
productand we have:

(i~~ = ~p ~(1 ), p ~(2 )~= (~ji(l), ~ ~,(2 )~

Weseee that thespectrumof P is real and that L~is positiveselfadjoint.

d) If thereis on (W,g) a spinor field ~ without zero,set

(1.7) (P~ji, Piji)=r2(iji,~i) (r~0)

If r is > 0. the spinor r1Piji admits same squareas iji. Suppose that there

exists A : x E W -+ A(x) E Spin(n) such that

(1.8) Piji=rA~

We will study spinor fields (having or not zeroes) satisfying (1.7) or (1.8),
r being ~ 0. If ~jisatisfies(1.8), introducea correspondingconnectionon the

vector bundle ~ given by u~f”~= + (r/n) y A We denoteby V~’~

the correspondingcovariantdifferentiation.We have:

= V ~ +(r/n)yA ~

Afield ~1,such that ~ = 0 satisfies(1.8). Wenow have (see [91).

PROPOSITION 1. Any field ~‘ ~ 0 such that ~ ~ii = 0 has no zero on W.

In fact, consider a domain U of W with a local section {e
0 } of E and denote

by {OX} the dual of {e0}; on U we set = w13~OX.Suppose that i,1i admits
a zero on W; we can find on such a domain U two points x1, x2 connected
by a path ,n(t) such that ~1i(x1)= 0 and ji(x2) * 0. If m(t) = M°(t)e, i/i 0/fl

satisfy the linear differential equation with smooth coefficients

(d/dt) (~o m) — (1/4) MX (t) w013~7°7

13(~1o m) +

+ (r/n)Mx(t)7x A(~ o m) = 0

We deduce from the nullity of the initial condition at that ~ 0 m 0

and ~icannotbe~O. a

e) Take r = const., ‘A = e0 Id where 0 = const. and set = r e’0 E C.
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A Killing spinorof(W, g) is a spinor ~/i ~ 0 suchthat

(1.9) V(~i)iji=Vp+(v,/n)yiji=O

where ~ is a complexconstant.We have thenP~ji= i.’~i,li and i-’~ is an eigenvalue

of P. If = 0 we have a parallel spinor field. We say that a Killing spinor is

non trivial if v1 *0.

2. The operatorD defining the twistor-spinorsandthe universalformula

a) We introduce systematicallyin the following the first order differential
operatorD on the spinorsdefinedby:

(2.1) D~i=Viji+(1/n)7F~ji

which satisfies7°D ~ji = 0. If ~l’satisfies(1.8) V~”~ti = Diji. It is well-known

that the twistor equation ([10] up to notations)canbe written

(2.2) ‘y0V13 i/i +713V~t1=(2/n)g013Plji

By multiplication by 7
13,it follows from (2.2) that:

—(n + 2) V
0~/i—’y0Piji=(2/n)’y0 P~,b

that is:

(n + 2) (V0 iji + (1/n) ‘y0 Piji) = 0

let DIll = 0. The converse is clear. Therefore DI’ = 0 saysthat I’ satisfies the

twistor equation. A spinor I’ satisfying D~ji = 0 is called herea twistor-spinor.

b) Let I’ be an arbitrary spinor field. We associate with I’ the real scalar and
the real 1 -form given by

u(I’)=u=(I’,Iji)=~ Iji~O T(I’)=~’yPiji—P~’yI’

Let usevaluatethe positiveLaplacianof U:

L~u=_V0V0(~iji) =~(V°V0Il~)I’ — I’(V0V03j/)_2V0~V0I’

let:

(2.3) L~u=(i~)I’ + ~(L\I’)—(R/2)u—2(VI’,VI’)

But we have

(2.4) 1,11(A I’) = ~Y°V P1’ = V(1”y° P1’) + (P1’, P1’)

It follows from (2.3), (2.4) that the codifferential of the 1-form T(I’) satisfies
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(1/2)Au + (1/2) ~ T(1’) = — (R/4)u + (P1’, P1’) — (V1’, V1’)

Wededuce from (2.1):

(V1’, VI’) = (DI’, DI’) + (1/n) (P1’, P1’)

Weobtain thus the universalformula,valid for an arbitrary field 1’:

(2.5) (I/2)Au + (1/2) ~ T(iji) = — (R/4)u + ((n — l/n)(PI’, P1’)-(D1’,D~ji)

c) By differentiation of (2.1), we have:

—V°DI’=—V°V1’—(l/n)A1’

that is:

(2.6) —V°DIJ=((n — l)/n)(A1’—pI’) (p=(n/4(n — l))R)

Suppose W is compact.We obtain by integration of (2.5) on (W, g)

((n — 1)/n) <P1’, P1’) = <(R/4) 1’~1’) + <DI’, D1’)

that is

(2.7) <AI’ —p1’, 1’) = (n/(n — I)) <DI’, DI’)

Thereforeit follows from (2.6), (2.7)

PROPOSITION 2. On a spin manifold, every twistor-spinor 1’ (with DI’ = 0)
satisfies

(2.8) A1’ — ~1’= 0 (p = (n/4 (n — l))R)

If W is compact, the operator (A — p) on the spinors is a positive operator.

Everysolution of(2.8) is a twistor-spinor. •

In the following part of this paragraph, we consider only twistor-spinors.

If D1’ = 0, an elementarycomputationgives:

(2.9) ndu=—T(1’) ~T(I,1i)=—nAu

It follows from (2.5) that:

(2.10) (n/2) Au = pu — (Fl’, P1’)

From (1.4)andDI’ = 0, we deduce:

((n—2)/n)V0P1’—(l/n)70A1’+(1/2)R013’y
131’=0

and it follows from (2.8) that
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(2.11) ((n—2)/n)V0F1’—(p/n)70I’+(1/2)R~7
13I’=0

Introduce the real 1-form J(çti) = I ~‘yIJ,. Taking the product of (2.11)

by IJI, we obtain

(n — 2)V
0(IJ’ FIJI) + ((n — 2)/n)iJ0(Pçt’)+ i p J~(I’)— i (n/2)Rn13J~(I’)= 0

It follows by adjunction and addition that:

(n—2)V (1’(PI’)+ (~)1’)=0

Wehave:

PROPOSITION3. Let (W, g) be a spin manifoldofdimensionn ~ 3. Every twistor-
spinor 1’ satisfies:

(2.12) I’(Piji) + (PIJ.’)I’ = const.

3. Conformalchangeof metric

a) Introduce on W a conformal metric ~ = exp (2c.)g, wherec is a real-valued

function. The quantities corresponding to (W, ~) are covered by a bar. A spin
structure 7 of(W,g) correspondsto a spin structure y of (W,j) anda s~inor1,of (h<g)
to a spinor 1’ of (W, ~); in this correspondancethe vector-spinor ‘~, referred
to orthonormal frames of (W, g) has componentsgiven by exp(— c) ,1a• ~

known (see[11] that for any spinor field 1’ we have):

(3.1) ~ =V01’—(l/2) 313C 7~7~I’—(1/2) ~c iji

If follows that:

(3.2) FIJi = exp(—c) [P1’+ ((n — 1)12) ~c ?~I

andthus

(3.3) F[ex~(_ ~--~ ~)~]= exp (— ~ c) i~

We deducefrom (3.1),(3.2), that:

= DI’ — (l/2n) a13c 77~~1’— (1/2) ac 1’

andtherefore:

(3.4) D [ex~(~)~]=exp(~-’)~



8 ANDRE LICHNEROWICZ

Let X be the spaceof the twistor-spinor of (W, g). If W is compact, )t’ is
the space of the solutions of the elliptic equation (2.8) and the complex di-
mensionof ~is finite. We obtain

THEOREM 1. The operator D is conformally covariant. In particular if W is com-

pact, the complexdimensionof thespace.Y(ofthe twistor-spinorsis a conformal

invariant of(W,g).

2. KILLING SPINORS

4. Propertiesof spinorsI’ suchthatV~1’ = 0

a) Let f be a complex-valued function on W; we set f = re’° = a + ib where
r is ~ 0 and where a, b are real-valued functions. For A = e’°Id the covariant

derivative V~’~”)I’ can be written

(4.1) V~!~1’=VI’ + (f/n)7I’

Study the spin manifolds of dimension n ~‘ 2 which admit spinors 1’ ~ 0
such that V~1’ = 0, that implies P1’ = fI’; the twistor-spinor 1’ is without zero

and u(1’) is > 0. It follows from (1 .4) that we have for a twistor-spinor:

VPI’ + (1/n)V13 (7
13

70P1’) + (I/2)R0137
13IJ1= 0

which canbewritten for W~ 0

(4.2) Vf. I’ + (1/n)V
13f. 7137~1’+ (1/2)(R013—(4(ii — 1)/n

2)f2g
013)’y

131’ = 0

Multiplying by 70 we get:

(4.3) V
0f7° 1’ — (p —f

2) 1’ = 0

b) From (4.1)we deducethat if 1’ satisfies V~-t~~Jí= 0, we have:

(4.4) ndu(1’)=—2bJ(Iji),

Now multiplying (4.3) by 1’ and separatingreal and purely imaginary parts,

we get:

(4.5) J°(IJi)V
0a —2abu = 0

and

(4.6) J0(1’)Vb_(p_a
2+b2)u=0

If n ~ 3, (2.12) takesthe simpleform:

(4.7) au=C=const.
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5. Killing-spinors

a) Let I’ ~ 0 be a Killing spinor of (W, g) of dimensionn ~ 2. We cantake

f = E C. It follows from (4.5) that v1 is eitherreal or purely imaginaryand
we deducefrom (4.2), (4.3) that:

(5.1) R013 = (R/n)g013 = p = (n/4(n — l))R

In particular,if 1’ is a parallel spinor field (v1 = 0), the Ricci tensorof (W, g)
is null. We considerherenon trivial Killing spinors(v, ~ 0).

If W is compact,v, is necessarilyreal since the spectrumof P is real. Con-
versely if ~ 0 is real, the Ricci tensoris positive definite and W is compact

accordingto a classicaltheoremof Myers.
Wehavethe following well-known proposition[9]

PROPOSITION4. If (W, g) of dimensionn ~ 2 admits a non zero Killing spinor,
it is an Einsteinspaceand v~= p. If i.’, ~ 0 is real, Wis compact; if v~ ~ 0 is

purely imaginary, Wis non compact. a

is real, it follows from (4.4) that u(1’) = const.and ifJ(1’) ~ 0, it defines
an infinitesimal isometry,that is a Killing vector. It is the origin of the nameof
Killing spinor.

b) Consider a spinor 1’ ~ 0 such that V~-~~1’= 0. Multiplying (4.3) by 713~

wehave:

V13f.1’+(p—f
2)

7131’+ ~V0f(70713_7137a)1’=O

andmultiplying by 1’, weobtain

(5.2) uV13f—i(p—f
2V

13(1’)+— V0f~~(f 713 77~)1’=0

where the factor 1’(’y
0 713 — 71370)1’ ispurelyimaginary. Separatingthe real and

purelyimaginarypartsof (5.2), we have:

(5.3) uV
13a—2abJ13(l’)+— Vb

and

(5.4) uV13b—(p—a
2 +b2)J

13(1’)— — Va~(70713_71370)1’=0
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Suppose that f is a real-valuedfunction (f = a). It follows from (5.3) that
a = const. Therefore 1’ is a Killing spinor correspondingto a real i’~.We have
obtainedby anothermethod:

PROPOSITION 5. (Hijazi [8]). On the spin manifold (W, g) ofdimensionn a 2,
let IJi ~ 0 be a spinor such that V”1~1’ = 0, where f is a real-valued function.
Then f is a constant and 1’ is a Killing spinor. The manifold is compactif this

spinor is non trivial.

6. The casewheren isn ~‘ 3

a) If n is ~ 3 we haveau = C (see (4.7)) and a V
0u + u V0a = 0. According

to (4.4), the relation(5.3) canbe written as:

uV13a + n aVu + (i/2) V/b 1’(707 _770) 1’ = 0

or

(6.1) (n — l)u V13a —(i/2) Vb~(70y13_y70) 1’ = 0

SupposeC ~ 0; if suchis the case,a is without zero. Multiplying (6.1) by

V
13b we have V13a V

13b = 0 and thus V
13uV

13b = 0. It follows from (4.4) that
bJ

0(ijí) V
0b = 0, that is, accordingto (4.6):

b(p—a
2 +b2)=O

Let K be a domain of Won which (p—a2 + b2) ~ 0; we have b = 0 on K
and,accordingto (6.1) a = const on K;f being constanton K, it follows from

(4.2) that on K

= (4(n — l)/n2)a2 g
013 = (R/n)g013

and that p = a
2. Therefore(p — a2 + b2) = 0 on K, a contradiction.We see

that if a ~ 0 wehaveon W

(6.2) p—a2+b2=0

b) It follows from (6.1) that

(n—l)uV13aV
13a—(i/2)V bV13a1’(707

13_
7

13
70)1’ =0

But we deducefrom (54), according to (6.2):

uV
13bV/

13b — (i/2) V aV13b 1’(~y0~y
13_yøyO) 1’ = 0

Weobtain by addition
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(n—i) V13aV
13a + V

13bV
13b= 0.

It follows that a = const., b = const.and I’ is a Killing spinor. Wehave:

THEOREM 2. On a spin manifold (W, g) of dimensionn ~‘ 3, let 1’ ~ 0 bea spinor
such that ~ = 0, where f is a complex-valuedfunction with real part a ~ 0.

Then f is a constant and 1’ is a Killing spinor on (W, g) which is necessarilycom-

pact.

Forn ~‘ 3, we obtain an extensionof the aboveHijazi proposition.

7. Parallel formsandKilling spinors

a) Let (W, g) be a spin manifold of dimensionn ~ 2. We denoteby S the
classical isomorphism betweenforms and (1 ,l)-spinors;if 13 is a k-form, Sf3 is
given by

Sj3=(1/k!)f3~ ~

1 k

A straightforwardcomputationshows that:

(7.1) 70(Sf3)‘)( = (_ l)k_ln(i — (2k/n)) (Sf3)

Let 1’ be a non trivial Killing spinor on (W, g) (V(”i ~1’ = 0). If (3 is a parallel
k-form (k ~ 0, n) on (W, g),Sf3 is also parallel andwe have

V(Sf3) I’ =—(p~/n)(Sf3)7~1’

It follows that:

_VOV0 (Sj3) I’ = (v~/n)(Sf3) 1’

WesetX = (Sf3) 1’. Wehave:

(v~=p)

or

Ax = x
But we deducefrom (7.1) that:

Px=—(v1/n)’y
0(Sf3)7I’ =

where v = (—
1)k v1(1 — 2k/n). It follows A x = ~

2x.If (S~3)iJi~ 0, wehave
p2 = v~and thus(I — 2k/n)2 = 1 ,impossiblefor k ~ 0, n. Therefore (Sf3) iji = 0.

b) We havethen f3~ ~ 1 -

7xk I’ = 0. It follows by differentiation
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that:

f3xl...xk7X1...7J~~701’=0

that is:

~

We have:

f3nlx2...xk~2...7xk1’=o

After new differentiations,weget:

7~1’=0

which implies (3 = 0. We have:

PROPOSITION 6. Let (W, g) be a spin manifoldofdimensionn ~ 2 admittinga
non trivial Killing spinor. There are no non trivial parallel k-for,ns (k * 0, n)

on (W, g). In particular such a manifold is necessarilyirreducibleand non-KoJzle-
nan. a

3. THE HIJAZI INEQUALITY AND ITS UNIVERSALITY

8. Conformal changeof metric

In this section,we supposethat W is compactand that di,n W is ~ 3 [13,
14].

a) Let us come back to the situation and to the notationsof paragraph3.
It is convenientto write the conformal factor under the form exp(2c)= h

41’~2,

whereh is > 0. The scalarcurvatureR of (W, g) is given by:

(8.1) Rexp(2c)= (4(n — l)/(n —2))h~Ah+R

where A is the positive Laplacian.We are led to introducethe Yamabeoperator

(8.2) Lh = (4(ii — l)/(n —2))h ‘Ah +Rh

It is known that if -~ (g) is respectively<0, null or> 0, thereis on W a metric
conformal to g with a scalar curvature R <0, null or> 0. If R = const., we have

~I (g) = R.
Moreoverit follows from the theoremof Yamabe-Aubin-Schoen[15] that for

~ (g) respectively< 0, null or > 0, there existson W a metric conformal to g
wih aconstantscalarcurvature<0, null or> 0.

b) Let ~° be a space of the harmonic spinors of (W, g) (that is such that
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P1’ = 0 or Al’ = 0). It is known (as it is clear on (3.3)) that the complex di-
mension of )r is a conformal invariant of (W, g), that on a manifold with a
scalarcurvatureR everywhere> 0, wehave dim )~°= 0 and that if R = 0, every
harmonicspinoris parallel [6].

Let .)r be the spaceof the twistor-spinorsof (W, g). It follows from (2.7)
that on a manifoldwith a scalarcurvatureR everywhere<0, wehavedim .~ = 0

and that if R = 0, every twistor-spinoris harmonicandthusis parallel.
We deduce from the conformal invarianceof the dimensionsof ~*‘ and ,)1.

THEOREM 3. Let(W, g) bea compactspin manifoldofdimensionn ~‘ 3.
If p

1 (g)> Owe have dim )~°= 0
If p1 (g) < Owe have dim ~= 0

If p1 (g) = Owe have dim )~= dim )~°. .

9. Generalizationof Hijazi Inequality

a) According to (3.3), we havethe following proposition:

PROPOSITION 7. Let 1’ ~ 0 be a spinor of(W, g) such that (P1’, Fl’) = X
2(1’ 1’)

(X = const >0).
For any real-valuedfunction c, the spinor ~ of(W, j = exp(2c)g)correspond-

ing to p = exp((—(n — l)/2)c)1’ satisfies (Pip, Pp) = r2(~p,~p)wherer = X exp

(— c) >0. Converselylet ~ be a spinor of (W, g) such that (Pp, P~p)= r2(~p,p),
where r is >O;for c such that r = A exp(— c) the spinor I’ = exp((n —

of(W,g)satisfies(P1’, P1’) = X2(1’ 1’). a

b) If p
1 (g) is the first eigenvalueof the operatorL given by (8.2), there is

a factor exp(2 c1) such that p1 (g) = R1 exp(2 c1), whereR1 is the scalar cur-

vature of ~ = exp(2c1 )g. Let 1’ be an arbitrary spinor on (W, g),~ the conformal
spinor of (W,~)associatedwith 1’ (p = exp((—(n — 1)/2)c1)IJI).

Apply (2.5) to (W, ~) and to ~. Weobtain by integrationon (W, ~):

(9.1) f [(R1/4)u — ((n — l)/n)(F~,P~)J~+ f (D~,D~ = 0

w

where i~is the volume elementof (W, ~)and 17 the squareof~.The first integral
is ~ 0 and the equality correspondsto the case where D~p= 0. We now have

i~=exp(nc1)~ i~=exp(—(n—l)c1)u

It follows from (9.1) that:
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(9.2) f [(p
1 ~)/4)u — ((n — l)/n)(P1’, P1’)] exp(—c~) ~~ 0

Wehave:

THEOREM 4. Let (W, g) be a compact spin manifOld of dimension n ~‘ 3, p1 (g)
the first eigenvalueof tile Yamabeoperator. For any spinor field 1’~ there is a

domainof W on which:

(9.3) (P1’, P1’)~’(n/4(n — l))p1(g), (1’S 1’)

If IJi ~ 0 is such that (P1’, P1’) = X
2(1’, 1’) (A = const > 0), we have the Hijazi

inequality:

(9.4) A2 ~ (n/4(n —I)) p
1 (g)

This theoremis of interest only if p1 (g) is positive.The inequality (9.4)has
been obtained by Hijazi for the particular case of the eigenvalues of the Dirac

operator, by a different method [8].

10.The limiting case

Supposep1 (g) > 0 andset = (n/4(n — 1)) p1 (g) (with A1 > O’~.
a) Supposethat we have a spinor 1’ ~ 0 such that (P1’, P1’) = X~(1’,1’). We

have(Pip, Pip) = r~(p, ip) where r1 = A1 exp(— c1 ) satisfies

(10.1) (R1/4) — ((n — l)/n)r~ = 0

It follows from (9.1) that Dip = 0. We have u = const. accordingto (2.10)

andaccordingto (2.7)

(10.2) Aip=r~p

Introduceon (W, ~) the spinor ~ = P~’such that (x, ~) = ~ It follows from

(10.2) that (hi, .P~) = ~ x). We can apply (2.5) to (W, g) and to x. We obtain
accordingto (10.1).

(10.3) (1/2) A(r~u)+ (1/2) 6 T(~)= — ~ D~)

andwe haveby integrationD~= 0. It follows from (10.1) and(2.10) that r~u =

= const.and thus that r1 = const. c1 = const. By the homothetycorresponding
to c1, we deducefrom i~= const. that u = const.and from Dip = 0 thatDI’ = 0
accordingto paragraph3. It follows from (2.8)and (2.10):

(10.4) A1’—X~Vi=(P—eX1)(P+eX1)1’=0
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where e = ± 1. We set

(10.5) ~ze=0/~i)P1’+1’

wherea~1anda_1 satisfy

(10.6)

According to (10.4),we haveimmediately:

(10.7) Pa =�A1 a

b) Let us considerthe spinor a ~ 0 thatPa = v~a, where v~= (n/4(n — 1))
p1 (,g) * 0. It follows from (a) thatDa = 0 that is

Va + (v1/n)-ya= 7~a = 0

LEMMA (Hijazi). On a compactspin manifoldofdimensionn~’3, every spinor

a ~ 0 satisfyingPa = v1a, where v~= (n/4(n — 1)) p1(g) * 0, is a non trivial
Killing spinor [8].

According to (10.6), we see that, with the notationsof (a), either a~1 or

a_1 is ~ 0 and thusis a Killing spinor. It follows for thelimiting case of the ine-

quality (9.4).

THEOREM 5. Let (W, g) be a compactspin manifold of dimensionn ~‘ 3. If
1’ ~ 0 is a spinor field on (W, g) such that (P1’, P1’) = X~(1’,4.’), where =

= (n/4(n — 1)) p1 (g) * 0, (W, g) admits a .lilling spinor of the for,n (i/c A1)

P1’ + 1’ (e = ± 1) corresponding to tile eigenvalue v1 = �A~.In particular (W, g)
is an Einsteinspace.

11. Twistor-spinors and Killing spinors

Analysethe space.~( of the twistor-spinorsby meansof thetheoremof Yama-
be-Shoen [15]. If dim ..~t’z�z 0, by a conformal changeof the metric and of the

twistor spinors, we can supposeR = const. ~‘ 0. If R = 0, we haveseenthat
thereis coincidencebetween.)r and the spaceof the Killing spinors (all parallel
in this case).

Supposethat R = const.> 0. We haveR = p1 (g) and p = X~(with X~=

= (n/4(n — l))R;A1 >0).

If 1’ ~ 0 belongsto .*‘, we have(10.4) and,with a changeof notations,24i=
= a + (3, where

(11.1) a=(l/X1)P4/+1’
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Ifa,flare*0,aandI3 are Killing spinors.If a orGisnull, 1’ isaKillingspinor.
Let K~ be the spaceof the spinors 4’ satisfying P1’ = v

1 1’ (where v~= n/4

(n — I)p1 (gfl. If and — v1 are eigenvaluesof F, we have 1~~’=K o K

it is the case,in particular,if n is even. If is eigenvalueand no — i.’~, we ha’,~’e
~)V=K~ andK~ ={o}.

We se~by a cor~formalchangeof metric thatwe have:

THEOREM 6. Let (W, g) be a compactspin manifold ofdimensionn ~ 3 such
that the space.)( of the twistor-spinors of (W, g) is not reducedto 0 . There

existson Wa metric ~ = exp(2c)gsuch that (W, ~)admits non vanishingKilling
spinorsand thus is an Einstein space. If p1 (g) ) 0, (W, j) is irreducible and non

Kdhlerian.
The di,nensionof)~cis the dimensionof the spaceK e K_~, where K~

(resp. K_~if it is * 0) is the spaceof the Killing spinorsof’ (W, ~)~orrespondin~

to v1 (resp. — ~‘ U

12.Zeros of a twistor-spinor

Suppose (W, g) such that R = const. > 0. Let 1’ ~ 0 be a twistor-spinorof
(W, g). If v1 and — v~ (with v~= p) are eigenvaluesof the Dirac operatorP, it

follows from paragraph11 that I’ = a + j3, wherea (resp.(3) is a Killing spinor
correspondingto the eigenvaluev1 (resp.— v1).

Setf = (a, (3) andstudyAf. We have:

where

V/a = — (p1/n)
7~a V) = —(v

1/n)j
3’y~

It follows:

Af=_VAVx~.a_j3VAVx a—2V.’j3V~’a

where:

2 Vx/~’Vxa= —(2 v
1

2/n)f

Moreover

_V1’V~a=(P
1/n)Pa=(P~/n)a —V”V~(3~=(P~/n)f3

We obtain:

(12.1) Af=(4v~/n)f



KILLING SPINORS,TWISTOR-SPINORS AND HIJAZI INEQUALITY 17

that is

(12.2) Af= (R/(n— l))f

It is known (theoremof Obata-Lichnerowicz[16, 18]) that, if the complex-
valued functionf, solution of (12.2) is not identically zero,(W, g) is necessarily
isometric with the sphere (5”, Can) endowedwith its canonicalmetric. If such
is not the case,we havef = (a, (3) 0. Therefore

(1’s 1’)= (a,a)+ (f3,f3)

andsince(a,a) = const.,(j3,f3) = const.,we have

(1’, 1’) = const.

If 1’ admitsa zero on W,wehave 1’ 0.
We obtain by meansof a conformalchangeof metric andof spinor

THEOREM 7. Let (W, g) be a compactspin manifoldof dimensionn ~ 3 which
is not conformally isometric to the sphere(5”, Can).Every twistor-spinor1’ 0
of(W,g) is without zero on W.

It is clear that, for (5”, Can) the conclusionof the theoremdoesnot hold.
We note that, for n = 4, if (W, g) admitsa twistor-spinor~ 0, (W, g) is conformal-
ly isometric with (54, Can) (see Hijazi [17]). For n = 5, thereexist, according
to S. Sutankenonhomogeneousmanifolds ~5 /T (f discrete)admittingnon trivial

twistor-spinors. For n = 6, T. Friedrich and R. Grunewaldhaveshowed that
P3(C) (and F(l, 2)) endowedwith a suitable metric admits twistor-spinors~ 0

and thuswithout zero.
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