Killing spinors, twistor - spinors and Hijazi inequality

ANDRE LICHNEROWICZ
Colfege de France
Paris
Dedicated to I.M. Gelfand on his 75th birthday

Abstract

Let (W, g) be a spin manifold of dimension n. In terms of the Dirac operator P of (W, g), we introduce on the spinor fields a conformally covariant first-order operator D that is strictly connected with the twistor-spinors. We show that the operator $(\Delta-\rho)(\rho=(n / 4(n-1)) R)$ is positive. For a compact spin manifold of dimension $n \geqslant 3$, the existences of harmonic spinors and twistorspinors $\not \equiv 0$ are mutually exclusive, except for the parallel spinors. By means of a universal formula, we show that the Hijazi inequality [8] holds for every spinor field such that $(P \psi, P \psi)=\lambda^{2}(\psi, \psi)(\lambda=$ const $)$. In the limiting case, the manifold admits a Killing spinor wich can be evaluated in terms of ψ. Using the YamabeSchoen theorem [15], we prove that, if the space \mathscr{K} of the twistor-spinors of (W, g) is not reduced to zero, there is a conformal change of the metric g giving a manifold with Killing spinors $\neq 0$. Interpretation of $\operatorname{dim} \mathscr{X}$ in terms of these spaces of Killing spinors. If the compact spin manifold (W, g) of dimension $n \geqslant 3$ is not conformally isometric with the sphere, every twistor-spinor is without zero on W.

INTRODUCTION

Killing spinors were first introduced in Mathematical Physics: general relativity, 11 -dimensional (resp. 10-dimensional) supergravity theory, supersymmetry, matter fields (see, for example [1] to [5]). The context is often the following:
the main space is a fiber bundle on a space-time; the fibers are properly Riemannian manifolds (for example spheres or homogeneous spaces) admitting a spinor structure. In many cases, Killing spinors appear on these manifolds.

The notion also appears in a purely geometrical way in direct relation with the Dirac operator P of a spin manifold. A Killing spinor is automatically an eigenspinor of P and is a generalization of the notion of parallel spinor. Many years ago, I studied properties of parallel spinors in the context of the harmonic spinors [6]. Some interesting steps in this direction has been recently taken by Friedrich [7] and Hijazi [8].

The notion of Killing spinor is a particular case of the notion of twistor-spinor which has been introduced by Penrose [10]. I have defined recently [12] a conformally covariant first-order operator D on the spinors such that the twistorspinors are the zeros of D. This operator appears in an universal formula that is the main tool of this paper (formula (2-5)).

For a compact spin manifold, Hijazi has given a lower bound for the square of the eigenvalues of P in terms of conformal geometry. The limiting case is precisely the case when the manifold admits Killing spinors. I shall place here the Hijazi inequality in its true context, showing that, in a suitable sense, this inequality is universal. My approach differs from that a Hijazi (see Theorem 4 and Theorem 5). I will show that, roughly speaking, harmonic spinors and twistorspinors have a character mutually exclusive.

It is possible to interpret the dimension of the space of the twistor-spinors in terms of the dimensions of the spaces of Killing spinors corresponding to a suitable conformal metric given by the Yamabe-Schoen theorem [15]. We prove with the same tool that if a manifold is not conformally isometric with the sphere, every twistor-spinor is without zero.

According to the Hijazi inequality, the physical philosophy which appears can be given in the following way; consider a compact spin manifold as a basis for a Euclidean model for fermionic field ψ. If the manifold admits Killing spinors, we can consider the corresponding eigenvalue ν_{1} of the Dirac operator P as associate with a ground state: if ψ satisfies $(P \psi, P \psi)=\lambda^{2}(\psi, \psi)$, we have $\lambda^{2} \geqslant v_{1}^{2}$.

1. DEFINITIONS AND GENERAL FORMULAS

1. Spin manifolds and corresponding connections

a) Let (W, g) be an oriented Riemannian manifold of dimension $n \geqslant 2$ (with, $n=2 \nu$ or $n=2 \nu+1$) endowed with a positive definite metric g. If (W, g) has a spin structure with fundamental vector-spinor γ, there is a principal $\operatorname{Spin}(n)$ bundle \mathscr{E} on W which is a two-fold covering $p: \mathscr{E} \rightarrow E$ of the orthonormal oriented
frames bundle of (W, g) of structural group $S O(n)$; a point z is called a spin frame. The manifold (W, g) being referred to the orthonormal frames, introduce the $2^{\nu} \times 2^{\nu}$ Dirac matrices satisfying:

$$
\begin{equation*}
\gamma_{\alpha} \gamma_{\beta}+\gamma_{\beta} \gamma_{\alpha}=-2 g_{\alpha \beta} e \quad(\alpha, \beta=1, \ldots, n) \tag{1.1}
\end{equation*}
$$

These matrices give the components of γ with respect to the spin frames. It is well known that the matrices γ_{α} can be chosen antihermitian ($\tilde{\gamma}_{\alpha}=-\gamma_{\alpha}$, where \sim denotes the adjunction). The group $\operatorname{Spin}(n)$ can be considered as a group of $2^{\nu} \times 2^{\nu}$ unitary matrices Λ (with $\widetilde{\Lambda}=\Lambda^{-1}$) satisfying:

$$
\begin{equation*}
\wedge \gamma_{\alpha} \wedge^{-1}=A_{\alpha}^{\lambda^{\prime}} \gamma_{\lambda^{\prime}} \tag{1.2}
\end{equation*}
$$

where $A=\left(A_{\alpha}^{\lambda}\right)$ is the projection of \wedge on $S O(n)$.
If ψ is a contravariant 1-spinor $\left(\psi\left(z \Lambda^{-1}\right)=\Lambda \psi(z)\right.$, where z is a spinor frame), $\tilde{\psi}$ is a covariant 1 -spinor $(\tilde{\psi}(z \wedge)=\tilde{\psi}(z) \wedge)$ and the space $\Sigma_{x}(x \in W)$ of the contravariant 1 -spinors at x admits a canonical structure of Hermitian vector space given by the scalar product $\left(\psi^{(1)}, \psi^{(2)}\right)=\widetilde{\psi}^{(2)}, \psi^{(1)}$. We denote by Σ the vector bundle of the contravariant 1 -spinors of (W, g).
b) The Riemannian connection of (W, g) induces a connection on the principal bundle \mathscr{E} by the isomorphism between the Lie algebras of $\operatorname{Spin}(n)$ and $S O(n)$. Now introduce local section of the orthonormal frames bundle. If $\omega_{U}=\left(\omega_{\alpha \beta}\right)$ (with $\omega_{\alpha \beta}+\omega_{\beta \alpha}=0$) is, for a domain U of W, the 1 -form defining the Riemannian connection, the corresponding spinor connection is given by the 1 -form

$$
\begin{equation*}
\sigma_{U}=-(1 / 4) \omega_{\alpha \beta} \gamma^{\alpha} \gamma^{\beta} \tag{1.3}
\end{equation*}
$$

We denote by ∇ the corresponding covariant differentiation. We have $\nabla \boldsymbol{\gamma}=0$ and the adjunction commutes with ∇. Let $R C=\left(R_{\alpha \beta, \lambda \mu}\right)$ be the Riemannian curvature tensor of $(W, g), R i=\left(R_{\alpha \beta}\right)$ its Ricci tensor and R its scalar curvature. We have on U the classical formulas:

$$
R_{\alpha \beta, \lambda \mu} \gamma^{\beta} \gamma^{\lambda} \gamma^{\mu}=2 R_{\alpha \beta} \gamma^{\beta} \quad R_{\alpha \beta} \gamma^{\alpha} \gamma^{\beta}=-R .
$$

For a spinor field ψ, we have the Ricci identity:

$$
\left(\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha}\right) \psi=-(1 / 4) R_{\lambda \mu, \alpha \beta} \gamma^{\lambda} \gamma^{\mu} \psi
$$

It follows that:

$$
\begin{equation*}
\gamma^{\beta}\left(\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha}\right) \psi=-(1 / 2) R_{\alpha \beta} \gamma^{\beta} \psi \tag{1.4}
\end{equation*}
$$

c) Let P be the Dirac operator on $(W, g), \tilde{P}$ its adjoint. We have

$$
\begin{equation*}
P \psi=\gamma^{\alpha} \nabla_{\alpha} \psi \quad \widetilde{P} \tilde{\psi}=-\nabla_{\alpha} \tilde{\psi} \gamma^{\alpha} . \tag{1.5}
\end{equation*}
$$

We set $\Delta \psi=P^{2} \psi$ (Laplacian of spinor). An elementary calculus gives [1]

$$
\begin{equation*}
\Delta \psi=-\nabla^{\alpha} \nabla_{\alpha} \psi+(R / 4) \psi \tag{1.6}
\end{equation*}
$$

If W is compact, introduce the global scalar product $\left\langle\psi^{(1)}, \psi^{(2)}\right\rangle=\int_{W}\left(\psi^{(1)}\right.$, $\left.\psi^{(2)}\right) \eta$ where η is the Riemannian volume element. We have similar scalar products on the tensor-spinors; P is formally selfadjoint with respect to this scalar product and we have:

$$
\left\langle\Delta \psi^{(1)}, \psi^{(2)}\right\rangle=\left\langle P \psi^{(1)}, P \psi^{(2)}\right\rangle=\left\langle\psi^{(1)}, \Delta \psi^{(2)}\right\rangle
$$

We seee that the spectrum of P is real and that Δ is positive selfadjoint.
d) If there is on (W, g) a spinor field ψ without zero, set

$$
\begin{equation*}
(P \psi, \quad P \psi)=r^{2}(\psi, \psi) \quad(r \geqslant 0) \tag{1.7}
\end{equation*}
$$

If r is >0, the spinor $r^{-1} P \psi$ admits same square as ψ. Suppose that there exists $\wedge: x \in W \rightarrow \wedge(x) \in \operatorname{Spin}(n)$ such that

$$
\begin{equation*}
P \psi=r \Lambda \psi \tag{1.8}
\end{equation*}
$$

We will study spinor fields (having or not zeroes) satisfying (1.7) or (1.8), r being $\geqslant 0$. If ψ satisfies (1.8), introduce a corresponding connection on the vector bundle Σ given by $\sigma_{U}^{(r, \Lambda)}=\sigma_{U}+\left.(r / n) \gamma \Lambda\right|_{U}$. We denote by $\nabla^{(r, \Lambda)}$ the corresponding covariant differentiation. We have:

$$
\nabla^{(r, \Lambda)} \psi=\nabla \psi+(r / n) \gamma \Lambda \psi
$$

A field ψ such that $\nabla^{(r, A)} \psi=0$ satisfies (1.8). We now have (see [9]).
PROPOSITION 1. Any field $\psi \not \equiv 0$ such that $\nabla^{(r, A)} \psi=0$ has no zero on W.

In fact, consider a domain U of W with a local section $\left\{e_{\alpha}\right\}$ of E and denote by $\left\{\theta^{\lambda}\right\}$ the dual of $\left\{e_{\alpha}\right\}$; on U we set $\omega_{\alpha \beta}=\omega_{\alpha \beta, \lambda} \theta^{\lambda}$. Suppose that ψ admits a zero on W^{\prime}; we can find on such a domain U two points x_{1}, x_{2} connected by a path $m(t)$ such that $\psi\left(x_{1}\right)=0$ and $\psi\left(x_{2}\right) \neq 0$. If $m(t)=M^{\alpha}(t) e_{\alpha}, \psi$ o m satisfy the linear differential equation with smooth coefficients

$$
\begin{aligned}
& (d / d t)(\psi \circ m)-(1 / 4) M^{\lambda}(t) \omega_{\alpha \beta, \lambda} \gamma^{\alpha} \gamma^{\beta}(\psi \circ m)+ \\
& +(r / n) M^{\lambda}(t) \gamma_{\lambda} \Lambda(\psi \circ m)=0
\end{aligned}
$$

We deduce from the nullity of the initial condition at x_{1} that ψ o $m \equiv 0$ and ψ cannot be $\neq 0$.
e) Take $r=$ const., ${ }^{\wedge} \wedge=e^{i \theta} I d$ where $\theta=$ const. and set $\nu_{1}=r e^{i \theta} \in \mathbb{C}$.

A Killing spinor of (W, g) is a spinor $\psi \not \equiv 0$ such that

$$
\begin{equation*}
\nabla\left(\nu_{1}\right) \psi=\nabla \psi+\left(\nu_{1} / n\right) \gamma \psi=0 \tag{1.9}
\end{equation*}
$$

where ν_{1} is a complex constant. We have then $P \psi=\nu_{1} \psi$ and ν_{1} is an eigenvalue of P. If $\nu_{1}=0$ we have a parallel spinor field. We say that a Killing spinor is non trivial if $\nu_{1} \neq 0$.

2. The operator D defining the twistor-spinors and the universal formula

a) We introduce systematically in the following the first order differential operator D on the spinors defined by:

$$
\begin{equation*}
D \psi=\nabla \psi+(1 / n) \gamma P \psi \tag{2.1}
\end{equation*}
$$

which satisfies $\gamma^{\alpha} D_{\alpha} \psi=0$. If ψ satisfies (1.8) $\nabla^{(r, \Lambda)} \psi=D \psi$. It is well-known that the twistor equation ([10] up to notations) can be written

$$
\begin{equation*}
\gamma_{\alpha} \nabla_{\beta} \psi+\gamma_{\beta} \nabla_{\alpha} \psi=(2 / n) g_{\alpha \beta} P \psi \tag{2.2}
\end{equation*}
$$

By multiplication by γ^{β}, it follows from (2.2) that:

$$
-(n+2) \nabla_{\alpha} \psi-\gamma_{\alpha} P \psi=(2 / n) \gamma_{\alpha} P \psi
$$

that is:

$$
(n+2)\left(\nabla_{\alpha} \psi+(1 / n) \gamma_{\alpha} P \psi\right)=0
$$

let $D \psi=0$. The converse is clear. Therefore $D \psi=0$ says that ψ satisfies the twistor equation. A spinor ψ satisfying $D \psi=0$ is called here a twistor-spinor.
b) Let ψ be an arbitrary spinor field. We associate with ψ the real scalar and the real 1 -form given by

$$
u(\psi)=u=(\psi, \psi)=\tilde{\psi} \psi \geqslant 0 \quad T(\psi)=\tilde{\psi} \gamma P \psi-\tilde{P} \tilde{\psi} \gamma \psi
$$

Let us evaluate the positive Laplacian of u :

$$
\Delta u=-\nabla^{\alpha} \nabla_{\alpha}(\tilde{\psi} \psi)=-\left(\nabla^{\alpha} \nabla_{\alpha} \tilde{\psi}\right) \psi-\tilde{\psi}\left(\nabla^{\alpha} \nabla_{\alpha} \psi\right)-2 \nabla^{\alpha} \tilde{\psi} \nabla_{\alpha} \psi
$$

let:

$$
\begin{equation*}
\Delta u=(\Delta \tilde{\psi}) \psi+\widetilde{\psi}(\Delta \psi)-(R / 2) u-2(\nabla \psi, \nabla \psi) \tag{2.3}
\end{equation*}
$$

But we have

$$
\begin{equation*}
\tilde{\psi}(\triangle \psi)=\tilde{\psi} \gamma^{\alpha} \nabla_{\alpha} P \psi=\nabla_{\alpha}\left(\tilde{\psi} \gamma^{\alpha} P \psi\right)+(P \psi, P \psi) \tag{2.4}
\end{equation*}
$$

It follows from (2.3), (2.4) that the codifferential of the 1 -form $T(\psi)$ satisfies

$$
(1 / 2) \Delta u+(1 / 2) \delta T(\psi)=-(R / 4) u+(P \psi, P \psi)-(\nabla \psi, \nabla \psi)
$$

We deduce from (2.1):

$$
(\nabla \psi, \nabla \psi)=(D \psi, D \psi)+(1 / n)(P \psi, P \psi)
$$

We obtain thus the universal formula, valid for an arbitrary field ψ :

$$
\begin{equation*}
(1 / 2) \Delta u+(1 / 2) \delta T(\psi)=-(R / 4) u+((n-1 / n)(P \psi, P \psi)-(D \psi, D \psi) \tag{2.5}
\end{equation*}
$$

c) By differentiation of (2.1), we have:

$$
-\nabla^{\alpha} D_{\alpha} \psi=-\nabla^{\alpha} \nabla_{\alpha} \psi-(1 / n) \Delta \psi
$$

that is:

$$
\begin{equation*}
-\nabla^{\alpha} D_{\alpha} \psi=((n-1) / n)(\Delta \psi-\rho \psi) \quad(\rho=(n / 4(n-1)) R) \tag{2.6}
\end{equation*}
$$

Suppose W is compact. We obtain by integration of (2.5) on (W, g)

$$
((n-1) / n) \quad\langle P \psi, P \psi\rangle=\langle(R / 4) \psi, \psi\rangle+\langle D \psi, D \psi\rangle
$$

that is

$$
\begin{equation*}
\langle\Delta \psi-\rho \psi, \psi\rangle=(n /(n-1))\langle D \psi, D \psi\rangle \tag{2.7}
\end{equation*}
$$

Therefore it follows from (2.6), (2.7)
PROPOSITION 2. On a spin manifold, every twistor-spinor ψ (with $D \psi=0$) satisfies

$$
\begin{equation*}
\Delta \psi-\rho \psi=0 \quad(\rho=(n / 4(n-1)) R) \tag{2.8}
\end{equation*}
$$

If W is compact, the operator $(\Delta-\rho)$ on the spinors is a positive operator. Every solution of (2.8) is a twistor-spinor.

In the following part of this paragraph, we consider only twistor-spinors. If $D \psi=0$, an elementary computation gives:

$$
\begin{equation*}
n d u=-T(\psi) \quad \delta T(\psi)=-n \Delta u \tag{2.9}
\end{equation*}
$$

It follows from (2.5) that:

$$
\begin{equation*}
(n / 2) \Delta u=\rho u-(P \psi, P \psi) \tag{2.10}
\end{equation*}
$$

From (1.4) and $D \psi=0$, we deduce:

$$
((n-2) / n) \nabla_{\alpha} P \psi-(1 / n) \gamma_{\alpha} \Delta \psi+(1 / 2) R_{\alpha \beta} \gamma^{\beta} \psi=0
$$

and it follows from (2.8) that

$$
\begin{equation*}
((n-2) / n) \nabla_{\alpha} P \psi-(\rho / n) \gamma_{\alpha} \psi+(1 / 2) R_{\alpha \beta} \gamma^{\beta} \psi=0 \tag{2.11}
\end{equation*}
$$

Introduce the real 1 -form $J_{\alpha}(\psi)=i \tilde{\psi} \gamma_{\alpha} \psi$. Taking the product of (2.11) by ψ, we obtain

$$
(n-2) \nabla_{\alpha}(\tilde{\psi} P \psi)+((n-2) / n) i J_{\alpha}(P \psi)+i \rho J_{\alpha}(\psi)-i(n / 2) R_{\alpha \beta} J^{\beta}(\psi)=0
$$

It follows by adjunction and addition that:

$$
(n-2) \nabla_{\alpha}(\tilde{\psi}(P \psi)+(\tilde{P} \tilde{\psi}) \psi)=0
$$

We have:

PROPOSITION 3. Let (W, g) be a spin manifold of dimension $n \geqslant 3$. Every twistorspinor ψ satisfies:

$$
\begin{equation*}
\tilde{\psi}(P \psi)+(\tilde{P} \tilde{\psi}) \psi=\text { const. } \tag{2.12}
\end{equation*}
$$

3. Conformal change of metric

a) Introduce on W a conformal metric $\bar{g}=\exp$ (2c) g, where c is a real-valued function. The quantities corresponding to (W, \bar{g}) are covered by a bar. A spin structure γ of (W, g) corresponds to a spin structure γ of (W, \bar{g}) and a spinor ψ of (W, g) to a spinor $\bar{\psi}$ of (W, \bar{g}); in this correspondance the vector-spinor $\bar{\gamma}$, referred to orthonormal frames of (W, g) has components given by $\overline{\exp (-c) \gamma^{\alpha}}$. It is known (see [11] that for any spinor field ψ we have):

$$
\begin{equation*}
\bar{\nabla}_{\alpha} \bar{\psi}=\overline{\nabla_{\alpha} \psi}-(1 / 2) \partial_{\beta} c \overline{\gamma_{\alpha} \gamma^{\beta} \psi}-(1 / 2) \partial_{\alpha} c \bar{\psi} \tag{3.1}
\end{equation*}
$$

If follows that:

$$
\begin{equation*}
\bar{P} \bar{\psi}=\exp (-c)\left[\overline{P \psi}+((n-1) / 2) \partial_{\beta} c \overline{\gamma^{\beta} \psi}\right] \tag{3.2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\bar{P}\left[\exp \left(-\frac{n-1}{2} c\right) \bar{\psi}\right]=\exp \left(-\frac{n+1}{2} c\right) \overline{P \psi} \tag{3.3}
\end{equation*}
$$

We deduce from (3.1), (3.2), that:

$$
\bar{D}_{\alpha} \bar{\psi}=\overline{D_{\alpha} \psi}-(1 / 2 n) \partial_{\beta} c \overline{\gamma_{\alpha} \gamma^{\beta}, \psi}-(1 / 2) \partial_{\alpha} c \psi
$$

and therefore:

$$
\begin{equation*}
\bar{D}\left[\exp \binom{c}{2} \bar{\psi}\right]=\exp \binom{c}{\frac{1}{2}} \overline{D \psi} \tag{3.4}
\end{equation*}
$$

Let \mathscr{K} be the space of the twistor-spinor of (W, g). If W is compact, \mathscr{K} is the space of the solutions of the elliptic equation (2.8) and the complex dimension of \mathscr{K} is finite. We obtain

THEOREM 1. The operator D is conformally covariant. In particular if W is compact, the complex dimension of the space \mathscr{K} of the twistor-spinors is a conformal invariant of (W, g).

2. KILLING SPINORS

4. Properties of spinors ψ such that $\nabla^{(f)} \psi=0$
a) Let f be a complex-valued function on W; we set $f=r e^{i \theta}=a+i b$ where r is $\geqslant 0$ and where a, b are real-valued functions. For $\Lambda=e^{i \theta} I d$ the covariant derivative $\nabla^{(r, \Lambda)} \psi$ can be written

$$
\begin{equation*}
\nabla{ }^{(f)} \psi=\nabla \psi+(f / n) \gamma \psi \tag{4.1}
\end{equation*}
$$

Study the spin manifolds of dimension $n \geqslant 2$ which admit spinors $\psi \not \equiv 0$ such that $\nabla^{(f)} \psi=0$, that implies $P \psi=f \psi$; the twistor-spinor ψ is without zero and $u(\psi)$ is >0. It follows from (1.4) that we have for a twistor-spinor:

$$
\nabla_{\alpha} P \psi+(1 / n) \nabla_{\beta}\left(\gamma^{\beta} \gamma_{\alpha} P \psi\right)+(1 / 2) R_{\alpha \beta} \gamma^{\beta} \psi=0
$$

which can be written for $\nabla^{(f)} \psi=0$

$$
\begin{equation*}
\nabla_{\alpha} f \cdot \psi+(1 / n) \nabla_{\beta} f \cdot \gamma^{\beta} \gamma_{\alpha} \psi+(1 / 2)\left(R_{\alpha \beta}-\left(4(n-1) / n^{2}\right) f^{2} g_{\alpha \beta}\right) \gamma^{\beta} \psi=0 \tag{4.2}
\end{equation*}
$$

Multiplying by γ^{α}, we get:

$$
\begin{equation*}
\nabla_{\alpha} f \gamma^{\alpha} \psi-\left(\rho-f^{2}\right) \psi=0 \tag{4.3}
\end{equation*}
$$

b) From (4.1) we deduce that if ψ satisfies $\nabla^{(f)} \psi=0$, we have:

$$
\begin{equation*}
n d u(\psi)=-2 b J(\psi), \quad \nabla_{\alpha} J_{\beta}(\psi)+\nabla_{\beta} J_{\alpha}(\psi)=-(4 b / n) u g_{\alpha \beta} \tag{4.4}
\end{equation*}
$$

Now multiplying (4.3) by $\tilde{\psi}$ and separating real and purely imaginary parts, we get:

$$
\begin{equation*}
J^{\alpha}(\psi) \nabla_{\alpha} a-2 a b u=0 \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{\alpha}(\psi) \nabla_{\alpha} b-\left(\rho-a^{2}+b^{2}\right) u=0 \tag{4.6}
\end{equation*}
$$

If $n \geqslant 3$, (2.12) takes the simple form:

$$
\begin{equation*}
a u=C=\mathrm{const} . \tag{4.7}
\end{equation*}
$$

5. Killing-spinors

a) Let $\psi \not \equiv 0$ be a Killing spinor of (W, g) of dimension $n \geqslant 2$. We can take $f=\nu_{1} \in \mathbb{C}$. It follows from (4.5) that ν_{1} is either real or purely imaginary and we deduce from (4.2), (4.3) that:

$$
\begin{equation*}
R_{\alpha \beta}=(R / n) g_{\alpha \beta} \quad v_{1}^{2}=\rho=(n / 4(n-1)) R \tag{5.1}
\end{equation*}
$$

In particular, if ψ is a parallel spinor field ($\nu_{1}=0$), the Ricci tensor of (W, g) is null. We consider here non trivial Killing spinors ($\nu_{1} \neq 0$).

If W is compact, ν_{1} is necessarily real since the spectrum of P is real. Conversely if $\nu_{1} \neq 0$ is real, the Ricci tensor is positive definite and W is compact according to a classical theorem of Myers.

We have the following well-known proposition [9]

PROPOSITION 4. If (W, g) of dimension $n \geqslant 2$ admits a non zero Killing spinor, it is an Einstein space and $\nu_{1}^{2}=\rho$. If $\nu_{1} \neq 0$ is real, W is compact; if $\nu_{1} \neq 0$ is purely imaginary, W is noncompact.

If ν_{1} is real, it follows from (4.4) that $u(\psi)=$ const. and if $J(\psi) \not \equiv 0$, it defines an infinitesimal isometry, that is a Killing vector. It is the origin of the name of Killing spinor.
b) Consider a spinor $\psi \not \equiv 0$ such that $\nabla^{(f)} \psi=0$. Multiplying (4.3) by γ_{β}, we have:

$$
\nabla_{\beta} f \cdot \psi+\left(\rho-f^{2}\right) \gamma_{\beta} \psi+\frac{1}{2} \nabla_{\alpha} f\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0
$$

and multiplying by $\tilde{\psi}$, we obtain

$$
\begin{equation*}
u \nabla_{\beta} f-i\left(\rho-f^{2}\right) J_{\beta}(\psi)+\frac{1}{2} \nabla_{\alpha} f \cdot \tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0 \tag{5.2}
\end{equation*}
$$

where the factor $\tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi$ is purely imaginary. Separating the real and purely imaginary parts of (5.2), we have:

$$
\begin{equation*}
u \nabla_{\beta} a-2 a b J_{\beta}(\psi)+\frac{i}{2} \nabla_{\alpha} b \tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u \nabla_{\beta} b-\left(\rho-a^{2}+b^{2}\right) J_{\beta}(\psi)-\frac{i}{2} \nabla_{\alpha} a \tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0 \tag{5.4}
\end{equation*}
$$

Suppose that f is a real-valued function $(f=a)$. It follows from (5.3) that $a=$ const. Therefore ψ is a Killing spinor corresponding to a real ν_{1}. We have obtained by another method:

PROPOSITION 5. (Hijazi [8]). On the spin manifold (W, g) of dimension $n \geqslant 2$, let $\psi \not \equiv 0$ be a spinor such that $\nabla^{(f)} \psi=0$, where f is a real-valued function. Then f is a constant and ψ is a Killing spinor. The manifold is compact if this spinor is non trivial.

6. The case where \boldsymbol{n} is $\boldsymbol{n} \geqslant 3$

a) If n is $\geqslant 3$ we have $a u=C$ (see (4.7)) and $a \nabla_{\alpha} u+u \nabla_{\alpha} a=0$. According to (4.4), the relation (5.3) can be written as:

$$
u \nabla_{\beta} a+n a \nabla_{\beta} u+(i / 2) \nabla_{\alpha} b \tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0
$$

or

$$
\begin{equation*}
(n-1) u \nabla_{\beta} a-(i / 2) \nabla_{\alpha} b \tilde{\psi}\left(\gamma^{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma^{\alpha}\right) \psi=0 \tag{6.1}
\end{equation*}
$$

Suppose $C \neq 0$; if such is the case, a is without zero. Multiplying (6.1) by $\nabla^{\beta} b$ we have $\nabla^{\beta} a \nabla_{\beta} b=0$ and thus $\nabla^{\beta} u \nabla_{\beta} b=0$. It follows from (4.4) that $b J^{\alpha}(\psi) \nabla_{\alpha} b=0$, that is, according to (4.6):

$$
b\left(\rho-a^{2}+b^{2}\right)=0
$$

Let K be a domain of W on which $\left(\rho-a^{2}+b^{2}\right) \neq 0$; we have $b=0$ on K and, according to (6.1) $a=$ const on K; f being constant on K, it follows from (4.2) that on K

$$
R_{\alpha \beta}=\left(4(n-1) / n^{2}\right) a^{2} g_{\alpha \beta}=(R / n) g_{\alpha \beta}
$$

and that $\rho=a^{2}$. Therefore $\left(\rho-a^{2}+b^{2}\right)=0$ on K, a contradiction. We see that if $a \not \equiv 0$ we have on W^{\prime}

$$
\begin{equation*}
\rho-a^{2}+b^{2}=0 \tag{6.2}
\end{equation*}
$$

b) It follows from (6.1) that

$$
(n-1) u \nabla^{\beta} a \nabla_{\beta} a-(i / 2) \nabla_{\alpha} b \nabla_{\beta} a \tilde{\psi}\left(\gamma^{\alpha} \gamma^{\beta}-\gamma^{\beta} \gamma^{\alpha}\right) \psi=0
$$

But we deduce from (5.4), according to (6.2):

$$
u \nabla^{\beta} b \nabla_{\beta} b-(i / 2) \nabla_{\alpha} a \nabla_{\beta} b \psi\left(\gamma^{\alpha} \gamma^{\beta}-\gamma^{\beta} \gamma^{\alpha}\right) \psi=0
$$

We obtain by addition

$$
(n-1) \nabla^{\beta} a \nabla_{\beta} a+\quad \nabla^{\beta} b \nabla_{\beta} b=0 .
$$

It follows that $a=$ const., $b=$ const. and ψ is a Killing spinor. We have:

THEOREM 2. On a spin manifold (W, g) of dimension $n \geqslant 3$, let $\psi \neq 0$ be a spinor such that $\nabla^{(f)} \psi=0$, where f is a complex-valued function with real part $a \neq 0$. Then f is a constant and ψ is a Killing spinor on (W, g) which is necessarily compact.

For $n \geqslant 3$, we obtain an extension of the above Hijazi proposition.

7. Parallel forms and Killing spinors

a) Let $(W, g$) be a spin manifold of dimension $n \geqslant 2$. We denote by S the classical isomorphism between forms and (1,1)-spinors; if β is a k-form, $S \beta$ is given by

$$
S \beta=(1 / k!) \beta_{\lambda_{1} \ldots \lambda_{k}} \gamma^{\lambda_{1}} \ldots \gamma^{\lambda_{k}}
$$

A straightforward computation shows that:

$$
\begin{equation*}
\gamma^{\alpha}(S \beta) \gamma_{\alpha}=(-1)^{k-1} n(1-(2 k / n))(S \beta) \tag{7.1}
\end{equation*}
$$

Let ψ be a non trivial Killing spinor on $(W, g)\left(\nabla^{\left(\nu_{1}\right)} \psi=0\right)$. If β is a parallel k-form $(k \neq 0, n)$ on (W, g), $S \beta$ is also parallel and we have

$$
\nabla_{\alpha}(S \beta) \psi=-\left(\nu_{1} / n\right)(S \beta) \gamma_{\alpha} \psi
$$

It follows that:

$$
-\nabla^{\alpha} \nabla_{\alpha}(S \beta) \psi=\left(v_{1}^{2} / n\right)(S \beta) \psi
$$

We set $\chi=(S \beta) \psi$. We have:

$$
\Delta \mathrm{x}=\left(\nu_{1}^{2} / n+R / 4\right) \mathrm{x} \quad\left(\nu_{1}^{2}=\rho\right)
$$

or

$$
\Delta \mathrm{x}=\nu_{1}^{2} \mathrm{x}
$$

But we deduce from (7.1) that:

$$
P_{X}=-\left(\nu_{1} / n\right) \gamma^{\alpha}(S \beta) \gamma_{\alpha} \psi=\nu_{\chi}
$$

where $\nu=(-1)^{k} \nu_{1}(1-2 k / n)$. It follows $\Delta \chi=\nu^{2} \chi$. If $(S \beta) \psi \neq 0$, we have $\nu^{2}=\nu_{1}^{2}$ and thus $(1-2 k / n)^{2}=1$, impossible for $k \neq 0, n$. Therefore $(S \beta) \psi=0$.
b) We have then $\beta_{\lambda_{1}} \ldots \lambda_{k} \gamma^{\lambda_{1}} \ldots \gamma^{\lambda}{ }^{2} \psi=0$. It follows by differentiation
that:

$$
\beta_{\lambda_{1} \ldots \lambda_{k}} \gamma^{\lambda_{1}} \ldots \gamma^{\lambda} k \gamma^{\alpha} \psi=0
$$

that is:

$$
(-1)^{k} \beta_{\lambda_{1} \ldots \lambda_{k}} \gamma^{\alpha} \gamma^{\lambda 1} \ldots \gamma^{\lambda} k \psi-2 k \beta_{\lambda_{1} \ldots \lambda_{k-1}} \gamma^{\lambda_{1}} \ldots \gamma^{\lambda_{k-1}} \psi=0
$$

We have:

$$
\beta_{\alpha_{1} \lambda_{2} \ldots \lambda_{k}} \gamma^{\lambda} \ldots \gamma^{\lambda} k \psi=0
$$

After new differentiations, we get:

$$
\beta_{\alpha_{1} \alpha_{2} \ldots \alpha_{k-1} \lambda_{k}} \gamma^{\lambda k} \psi=0
$$

which implies $\beta=0$. We have:

PROPOSITION 6. Let (W, g) be a spin manifold of dimension $n \geqslant 2$ admitting a non trivial Killing spinor. There are no non trivial parallel k-forms $(k \neq 0, n)$ on (W, g). In particular such a manifold is necessarily irreducible and non-Kählerian.

3. THE HIJAZI INEQUALITY AND ITS UNIVERSALITY

8. Conformal change of metric

In this section, we suppose that W is compact and that dim W is $\geqslant 3$ [13, 14].
a) Let us come back to the situation and to the notations of paragraph 3. It is convenient to write the conformal factor under the form $\exp (2 c)=h^{4 / n-2}$, where h is >0. The scalar curvature \bar{R} of (W, \bar{g}) is given by:

$$
\begin{equation*}
\bar{R} \exp (2 c)=(4(n-1) /(n-2)) h^{-1} \Delta h+R \tag{8.1}
\end{equation*}
$$

where Δ is the positive Laplacian. We are led to introduce the Yamabe operator

$$
\begin{equation*}
L h=(4(n-1) /(n-2)) h^{-1} \Delta h+R h \tag{8.2}
\end{equation*}
$$

It is known that if $\mu_{1}(g)$ is respectively <0, null or >0, there is on W a metric conformal to g with a scalar curvature $R<0$, null or >0. If $R=$ const., we have $\mu_{1}(g)=R$.

Moreover it follows from the theorem of Yamabe-Aubin-Schoen [15] that for $\mu_{1}(g)$ respectively <0, null or >0, there exists on W a metric conformal to g wih a constant scalar curvature <0, null or >0.
b) Let \mathscr{H} be a space of the harmonic spinors of (W, g) (that is such that
$P \psi=0$ or $\Delta \psi=0$). It is known (as it is clear on (3.3)) that the complex dimension of \mathscr{H} is a conformal invariant of (W, g), that on a manifold with a scalar curvature R everywhere >0, we have $\operatorname{dim} \mathscr{H}=0$ and that if $R=0$, every harmonic spinor is parallel [6].

Let \mathscr{K} be the space of the twistor-spinors of (W, g). It follows from (2.7) that on a manifold with a scalar curvature R everywhere <0, we have $\operatorname{dim} \mathscr{K}=0$ and that if $R=0$, every twistor-spinor is harmonic and thus is parallel.

We deduce from the conformal invariance of the dimensions of \mathscr{H} and \mathscr{K}.

THEOREM 3. Let (W, g) be a compact spin manifold of dimension $n \geqslant 3$.
If $\mu_{1}(g)>0$ we have $\operatorname{dim} \mathscr{H}=0$
If $\mu_{1}(g)<0$ we have $\operatorname{dim} \mathscr{K}=0$
If $\mu_{1}(g)=0$ we have $\operatorname{dim} \mathscr{K}=\operatorname{dim} \mathscr{H}$.

9. Generalization of Hijazi Inequality

a) According to (3.3), we have the following proposition:

PROPOSITION 7. Let $\psi \neq 0$ be a spinor of (W, g) such that $(P \psi, P \psi)=\lambda^{2}(\psi, \psi)$ ($\lambda=$ const >0).

For any real-valued function c, the spinor $\bar{\varphi}$ of $(W, \bar{g}=\exp (2 c) g)$ corresponding to $\varphi=\exp ((-(n-1) / 2) c) \psi$ satisfies $(\bar{P} \bar{\varphi}, \bar{P} \bar{\varphi})=r^{2}(\bar{\varphi}, \bar{\varphi})$ where $r=\lambda \exp$ $(-c)>0$. Conversely let $\bar{\varphi}$ be a spinor of (\bar{W}, \bar{g}) such that $(\bar{P} \bar{\varphi}, \bar{P} \bar{\varphi})=r^{2}(\bar{\varphi}, \bar{\varphi})$, where r is >0; for c such that $r=\lambda \exp (-c)$ the spinor $\psi=\exp ((n-1) / 2) c) \varphi$ of (W, g) satisfies $(P \psi, P \psi)=\lambda^{2}(\psi, \psi)$.
b) If $\mu_{1}(g)$ is the first eigenvalue of the operator L given by (8.2), there is a factor $\exp \left(2 c_{1}\right)$ such that $\mu_{1}(g)=\bar{R}_{1} \exp \left(2 c_{1}\right)$, where \bar{R}_{1} is the scalar curvature of $\bar{g}=\exp \left(2 c_{1}\right) g$. Let ψ be an arbitrary spinor on $(W, g), \bar{\varphi}$ the conformal spinor of (W, \bar{g}) associated with $\psi\left(\varphi=\exp \left((-(n-1) / 2) c_{1}\right) \psi\right)$.

Apply (2.5) to (W, \bar{g}) and to $\bar{\varphi}$. We obtain by integration on (W, \bar{g}):

$$
\begin{equation*}
\int_{w}\left[\left(\vec{R}_{1} / 4\right) \bar{u}-((n-1) / n)(\bar{P} \bar{\varphi}, \bar{P} \bar{\varphi})\right] \vec{\eta}+\int_{w}(\bar{D} \bar{\varphi}, \bar{D} \bar{\varphi}) \bar{\eta}=0 \tag{9.1}
\end{equation*}
$$

where $\bar{\eta}$ is the volume element of (W, \bar{g}) and \bar{u} the square of $\bar{\varphi}$. The first integral is $\leqslant 0$ and the equality corresponds to the case where $\bar{D} \bar{\varphi}=0$. We now have

$$
\bar{\eta}=\exp \left(n c_{1}\right) \eta \quad \bar{u}=\exp \left(-(n-1) c_{1}\right) u
$$

It follows from (9.1) that:

$$
\begin{equation*}
\int_{W}\left[\left(\mu_{1}(g) / 4\right) u-((n-1) / n)(P \psi, P \psi)\right] \exp \left(-c_{1}\right) \eta \leqslant 0 \tag{9.2}
\end{equation*}
$$

We have:

THEOREM 4. Let (W, g) be a compact spin manifold of dimension $n \geqslant 3, \mu_{1}(g)$ the first eigenvalue of the Yamabe operator. For any spinor field ψ, there is a domain of W on which:

$$
\begin{equation*}
(P \psi, P \psi) \geqslant(n / 4(n-1)) \mu_{1}(g), \quad(\psi, \psi) \tag{9.3}
\end{equation*}
$$

If $\psi \not \equiv 0$ is such that $(P \psi, P \psi)=\lambda^{2}(\psi, \psi)(\lambda=\mathrm{const}>0)$, we have the Hijazi inequality:

$$
\begin{equation*}
\lambda^{2} \geqslant(n / 4(n-1)) \mu_{1}(g) \tag{9.4}
\end{equation*}
$$

This theorem is of interest only if $\mu_{1}(g)$ is positive. The inequality (9.4) has been obtained by Hijazi for the particular case of the eigenvalues of the Dirac operator, by a different method [8].

10. The limiting case

Suppose $\mu_{1}(g)>0$ and set $\lambda_{1}^{2}=(n / 4(n-1)) \mu_{1}(g)$ (with $\left.\lambda_{1}>0\right)$.
a) Suppose that we have a spinor $\psi \not \equiv 0$ such that $(P \psi, P \psi)=\lambda_{1}^{2}(\psi, \psi)$. We have $(\bar{P} \varphi, \bar{P} \bar{\varphi})=r_{1}^{2}(\bar{\varphi}, \bar{\varphi})$ where $r_{1}=\lambda_{1} \exp \left(-c_{1}\right)$ satisfies

$$
\begin{equation*}
\left(\bar{R}_{1} / 4\right)-((n-1) / n) r_{1}^{2}=0 \tag{10.1}
\end{equation*}
$$

It follows from (9.1) that $\bar{D} \bar{\varphi}=0$. We have $\bar{u}=$ const. according to (2.10) and according to (2.7)

$$
\begin{equation*}
\overline{\Delta \varphi}=r_{1}^{2} \bar{\varphi} \tag{10.2}
\end{equation*}
$$

Introduce on (W, \bar{g}) the spinor $\bar{\chi}=\overline{P \varphi}$ such that $(\bar{\chi}, \bar{\chi})=r_{1}^{2} \bar{u}$. It follows from (10.2) that $(\bar{P} \bar{\chi}, \bar{P} \bar{\chi})=r_{i}^{2}(\bar{\chi}, \bar{\chi})$. We can apply (2.5) to (W, \bar{g}) and to $\bar{\chi}$. We obtain according to (10.1).

$$
\begin{equation*}
\left.(1 / 2) \bar{\Delta}\left(r_{1}^{2} \bar{u}\right)+(1 / 2) \bar{\delta} \bar{T}(\bar{\chi})=-\bar{@} \bar{\chi}, \bar{D} \bar{\chi}\right) \tag{10.3}
\end{equation*}
$$

and we have by integration $\bar{D} \bar{\chi}=0$. It follows from (10.1) and (2.10) that $r_{1}^{2} \bar{u}=$ $=$ const. and thus that $r_{1}=$ const. $c_{1}=$ const. By the homothety corresponding to c_{1}, we deduce from $\bar{u}=$ const. that $u=$ const. and from $\bar{D} \bar{\varphi}=0$ that $D \psi=0$ according to paragraph 3. It follows from (2.8) and (2.10):

$$
\begin{equation*}
\Delta \psi-\lambda_{1}^{2} \psi=\left(P-\epsilon \lambda_{1}\right)\left(P+\epsilon \lambda_{1}\right) \psi=0 \tag{10.4}
\end{equation*}
$$

where $\epsilon= \pm 1$. We set

$$
\begin{equation*}
\alpha_{\epsilon}=\left(1 / \epsilon \lambda_{1}\right) P \psi+\psi \tag{10.5}
\end{equation*}
$$

where α_{+1} and α_{-1} satisfy

$$
\begin{equation*}
2 \psi=\alpha_{+1}+\alpha_{-1} \tag{10.6}
\end{equation*}
$$

According to (10.4), we have immediately :

$$
\begin{equation*}
P \alpha_{\epsilon}=\epsilon \lambda_{1} \alpha_{\epsilon} \tag{10.7}
\end{equation*}
$$

b) Let us consider the spinor $\alpha \not \equiv 0$ that $P \alpha=\nu_{1} \alpha$, where $\nu_{1}^{2}=(n / 4(n-1))$ $\mu_{1}(g) \neq 0$. It follows from (a) that $D \alpha=0$ that is

$$
\nabla \alpha+\left(\nu_{1} / n\right) \gamma \alpha=\nabla^{\left(\nu_{1}\right)} \alpha=0
$$

LEMMA (Hijazi). On a compact spin manifold of dimension $n \geqslant 3$, every spinor $\alpha \neq 0$ satisfying $P \alpha=\nu_{1} \alpha$, where $\nu_{1}^{2}=(n / 4(n-1)) \mu_{1}(g) \neq 0$, is a non trivial Killing spinor [8].

According to (10.6), we see that, with the notations of (a), either α_{+1} or α_{-1} is $\neq 0$ and thus is a Killing spinor. It follows for the limiting case of the inequality (9.4).

THEOREM 5. Let (W, g) be a compact spin manifold of dimension $n \geqslant 3$. If $\psi \not \equiv 0$ is a spinor field on (W, g) such that $(P \psi, P \psi)=\lambda_{1}^{2}(\psi, \psi)$, where $\lambda_{1}^{2}=$ $=(n / 4(n-1)) \mu_{1}(g) \neq 0,(W, g)$ admits a klling spinor of the form $\left(1 / \epsilon \lambda_{1}\right)$ $P \psi+\psi(\epsilon= \pm 1)$ corresponding to the eigenvalue $\nu_{1}=\epsilon \lambda_{1}$. In particular (W, g) is an Einstein space.

11. Twistor-spinors and Killing spinors

Analyse the space \mathscr{K} of the twistor-spinors by means of the theorem of Yama-be-Shoen [15]. If $\operatorname{dim} \mathscr{K} \neq 0$, by a conformal change of the metric and of the twistor spinors, we can suppose $R=$ const. $\geqslant 0$. If $R=0$, we have seen that there is coincidence between \mathscr{K} and the space of the Killing spinors (all parallel in this case).

Suppose that $R=$ const. >0. We have $R=\mu_{1}(g)$ and $\rho=\lambda_{1}^{2}$ (with $\lambda_{1}^{2}=$ $\left.=(n / 4(n-1)) R ; \lambda_{1}>0\right)$.

If $\psi \not \equiv 0$ belongs to \mathscr{K}, we have (10.4) and, with a change of notations, $2 \psi=$ $=\alpha+\beta$, where

$$
\begin{equation*}
\alpha=\left(1 / \lambda_{1}\right) P \psi+\psi \quad \beta=-\left(1 / \lambda_{1}\right) P \psi+\psi \tag{11.1}
\end{equation*}
$$

If α, β are $\neq 0 . \alpha$ and β are Killing spinors. If α or β is null, ψ is a Killing spinor.
Let $K_{\nu_{1}}$ be the space of the spinors ψ satisfying $P \psi=\nu_{1} \psi$ (where $\nu_{1}^{2}=n / 4$ $(n-1) \mu_{1}(g)$). If ν_{1} and $-\nu_{1}$ are eigenvalues of P, we have $\mathscr{K}=K_{\nu_{1}} \oplus K_{-\nu_{1}}$; it is the case, in particular, if n is even. If ν_{1} is eigenvalue and no $-\nu_{1}$, we have $\mathscr{K}=K_{\nu_{1}}$ and $K_{-\nu_{1}}=\{0\}$.

We see by a conformal change of metric that we have:

THEOREM 6. Let (W, g) be a compact spin manifold of dimension $n \geqslant 3$ such that the space \mathscr{K} of the twistor-spinors of (W, g) is not reduced to 0 . There exists on W a metric $\bar{g}=\exp (2 c) g$ such that (W, \bar{g}) admits non vanishing Killing spinors and thus is an Einstein space. If $\mu_{1}(g)=0,(W, \bar{g})$ is irreducible and non Kählerian.

The dimension of \mathscr{K} is the dimension of the space $K_{\nu_{1}} \oplus K_{-\nu_{1}}$, where $K_{\nu_{1}}$ (resp. $K_{-\nu_{1}}$ if it is $\neq 0$) is the space of the Killing spinors of (W, \bar{g}) corresponding to $\nu_{1}\left(\operatorname{resp} .-\nu_{1}\right)$.

12. Zeros of a twistor-spinor

Suppose (W, g) such that $R=$ const. >0. Let $\psi \not \equiv 0$ be a twistor-spinor of (W, g). If ν_{1} and $-\nu_{1}$ (with $\nu_{1}^{2}=\rho$) are eigenvalues of the Dirac operator P, it follows from paragraph 11 that $\psi=\alpha+\beta$, where α (resp. β) is a Killing spinor corresponding to the eigenvalue ν_{1} (resp. $-\nu_{1}$).

Set $f=(\alpha, \beta)$ and study Δf. We have:

$$
\nabla_{\lambda} f=\nabla_{\lambda} \tilde{\beta} \cdot \alpha+\tilde{\beta} \nabla_{\lambda} \alpha
$$

where

$$
\nabla_{\lambda} \alpha=-\left(\nu_{1} / n\right) \gamma_{\lambda} \alpha \quad \nabla_{\lambda} \tilde{\beta}=-\left(\nu_{1} / n\right) \tilde{\beta} \gamma_{\lambda}
$$

It follows:

$$
\Delta f=-\nabla^{\lambda} \nabla_{\lambda} \tilde{\beta} \cdot \alpha-\tilde{\beta} \nabla^{\lambda} \nabla_{\lambda} \alpha-2 \nabla_{\lambda} \tilde{\beta} \nabla^{\lambda} \alpha
$$

where:

$$
2 \nabla_{\lambda} \tilde{\beta} \nabla^{\lambda} \alpha=-\left(2 \nu_{1}^{2} / n\right) f
$$

Moreover

$$
-\nabla^{\lambda} \nabla_{\lambda} \alpha=\left(\nu_{1} / n\right) P \alpha=\left(\nu_{1}^{2} / n\right) \alpha \quad-\nabla^{\lambda} \nabla_{\lambda} \tilde{\beta}=\left(\nu_{1}^{2} / n\right) \tilde{\beta}
$$

We obtain:

$$
\begin{equation*}
\Delta f=\left(4 \nu_{1}^{2} / n\right) f \tag{12.1}
\end{equation*}
$$

that is

$$
\begin{equation*}
\Delta f=(R /(n-1)) f \tag{12.2}
\end{equation*}
$$

It is known (theorem of Obata-Lichnerowicz [16, 18]) that, if the complexvalued function f, solution of (12.2) is not identically zero, (W, g) is necessarily isometric with the sphere (S^{n}, Can) endowed with its canonical metric. If such is not the case, we have $f=(\alpha, \beta) \equiv 0$. Therefore

$$
(\psi, \psi)=(\alpha, \alpha)+(\beta, \beta)
$$

and since $(\alpha, \alpha)=$ const., $(\beta, \beta)=$ const., we have

$$
(\psi, \psi)=\text { const } .
$$

If ψ admits a zero on W, we have $\psi \equiv 0$.
We obtain by means of a conformal change of metric and of spinor

THEOREM 7. Let (W, g) be a compact spin manifold of dimension $n \geqslant 3$ which is not conformally isometric to the sphere (S^{n}, Can). Every twistor-spinor $\psi \equiv 0$ of (W, g) is without zero on W.

It is clear that, for (S^{n}, Can) the conclusion of the theorem does not hold. We note that, for $n=4$, if (W, g) admits a twistor-spinor $\neq 0,(W, g)$ is conformally isometric with (S^{4}, Can) (see Hijazi [17]). For $n=5$, there exist, according to S. Sutanke nonhomogeneous manifolds S^{S} / Γ (Γ discrete) admitting non trivial twistor-spinors. For $n=6$, T. Friedrich and R. Grunewald have showed that $P_{3}(C)$ (and $\mathrm{F}(1,2)$) endowed with a suitable metric admits twistor-spinors $\not \equiv 0$ and thus without zero.

REFERENCES

[1] E. Cremmer B. Julia and J. Scherek, Supergravity theory in 11-dimensions, Phys. Lett. 76 B, 409 (1978).
[2] M. J DuFF and C.N. POPE, Supergravity in Supergravity 81, (S. Ferrara and J.G. Taylor eds.) Cambridge Univ. Press, London 1982.
[3] R.G. MacLenaghan and Ph. Spindel, Intégrales premières des équations de Dirac en espace courbe, Bull. Soc. Math. Belg. 31, 30 (1979).
[4] B. Biran, F. Enghert, B. de Wit, H. Nicolal, Gauged $N=8$ supergravity and its breaking from spontaneous compactification, Phys. Lett. 124 B, 45 (1983).
[5] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258,46 (1985).
[6] A. Lichnerowicz Spineurs harmoniques, C.R. Acad. Sci. Paris AB 257, 7 (1963).
[7] T. Friedrich, Der erst Eigenwert des Dirac-Operators einer kompacten Riemannschen Manningfaltigkeit nicht-negative Knümmung, Maty. Nach. 97117 (1980).
[8] O. Hyazi, A Conformal Lower Bound for the Smallest Eigenvalue of the Dirac Operator
and Killing Spinors, Comm. Math. Phys. 104, 151 (1986).
[9] M. Cahen, S. Gutt, L. Lemaire and P. Spindel, Spineurs de Killing, Bull. Soc. Math. Belg. 38 A, 95 (1986).
[10] R. Penrose and W. Rindler, Spinors and Spaces-time II, p. 463 Cambridge Univ. Press. (1984).
[11] H. Baum, Spin Structures, p. 138 Teubner Leipzig 1981, T. Branson and Y. KossmannSchwarzbach.
[12] A. Lichnerowicz, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. in Math. Phys. 13, 331 (1987).
[13] J.L. Kazdan and F.W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Diff. Geom. 10, 113 (1975).
[14] T. Aubin, The Scalar Curvature in Differential Geometry and Relativity (M. Cahen and M. Flato eds.) 5-18, D. Reidel Dosdrecht 1976.
[15] R. SChoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. of Diff. Geom. 20, 479 (1984), J. M. Lee and T.H. Parker: The Yamabe problem, Bull. Amer. Math. Soc. 17, 37 (1987).
[16] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Springer Lecture Notes in Math. 194 (1970).
[17] O. Huazi, Caractérization de la sphère par les premières valeurs propes de l'opérateur de Dirac en dimension 3, 4, 7 et 8, C.R. Acad. Sci. Paris 303 I, 417 (1986); T. Friedrich and R. Grunewald: On the first eigenvalue of Dirac operator on 6 -dimensional manifolds, Ann. Global Anal. and Geom. 3, 265 (1985).

Manuscript received: May 25,1988

